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We study molecular diffusion in nanopores with different types of roughness under the exclusion of mutual
molecular collisions, i.e., in the so-called Knudsen regime. We show that the diffusion problem can be mapped
onto Levy walks and discuss the roughness dependence of the diffusion coefficients Ds and Dt of self- and
transport diffusion, respectively. While diffusion is normal in d=3, diffusion is anomalous in d=2 with Ds

� ln t and Dt� ln L, where t and L are time and system size, respectively. Both diffusion coefficients decrease
significantly when the roughness is enhanced, in remarkable disagreement with earlier findings.
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Diffusion and transport phenomena of gases in disordered
and porous media have been subject to intense research for
several decades �1–4�. Among the experimental and techni-
cal applications are heterogeneous catalysis �5�, adsorption
�6�, and separation �7�. Recent progress in synthesizing
nanostructured porous materials �6� has provided essentially
unlimited options for the generation of purpose-tailored pore
architectures. In particular, the recent achievements in fabri-
cating silicon wafers with tubular pores of deliberately struc-
tured diameter profiles �8� open up options for producing
porous materials with exactly recorded structural details in
the near future. In addition, in matter conversion and sepa-
ration, as two prominent technical applications, bimodal po-
rous materials have attained particular attention. These ma-
terials contain “transport pores” that ensure fast molecular
exchange between the microporous regions, in which the ac-
tual conversion and separation phenomena take place �9�.

In general, the diffusion of the gas molecules through the
pores depends on the collisons between the gas molecules as
well as on the collisions of the gas with the pore walls. In the
transport pores, the so-called Knudsen diffusion dominates,
where the interaction of the molecules with the pore walls
play the crucial role and the intermolecular collisions can be
neglected. In this case, the molecules perform a series of free
flights and change the flight direction statistically after colli-
sions with the pore walls. In this paper, we concentrate on
this case.

Experimentally, two kinds of diffusion problems can be
considered, the so-called transport diffusion, where the par-
ticles diffuse in a nonequilibrium situation from one side of
the system to the opposite side �here under the influence of a
concentration gradient� and the self- �or tracer� diffusion un-
der equilibrium conditions. These problems are described by
the transport diffusion coefficient Dt and the self- �or tracer�
diffusion coefficient Ds, respectively.

In most cases it is not possible to determine Dt and Ds
simultaneously. It is generally assumed that Ds and Dt are
equivalent in the Knudsen regime. Deviations between both
are normally attributed to intermolecular interactions. For the
exploration of the underlying porous material, different tech-
niques of diffusion measurement, including quasielastic neu-

tron scattering �10�, pulsed field gradient NMR �11�, and
interference microscopy �12� have become indispensable
tools. Their evidence is often based on structure-related cor-
relations of the experimental data with the different types of
molecular diffusion, including self- and transport diffusion.
The equivalence between both types of diffusion in the case
of Knudsen diffusion is a fundamental prerequisite.

Recently, this equivalence has been questioned by Malek
and Coppens �4,13,14�, who found by numerical simulations
that the self-diffusion coefficients decreased significantly
with increasing surface roughness of the pore, whereas the
transport diffusion coefficients were insensitive to the shape
of the boundary. If these findings were correct, most experi-
mental works that are based on the above techniques would
have to be reinterpreted.

In this paper, we use scaling arguments and numerical
simulations to understand how in the Knudsen regime both
types of diffusion depend on the morphological details of the
pores, in particular on their surface roughness. We show that
Knudsen diffusion depends crucially on the dimension d of
the system. In the experimentally relevant 3d pores, we find
that diffusion is normal, while for 2d pores, Ds depends loga-
rithmically on time t, and Dt depends logarithmically on the
lenghth L of the pore. Contrary to the findings of �4,13,14�,
both Ds and Dt decrease monotonically with increasing sur-
face roughness.

In the numerical simulations, the particles start at the left
side of the pore when transport diffusion is considered or in
the middle of the pore when self-diffusion is considered.
Each particle performs a random trajectory inside the pore,
where it moves with constant velocity u0 along the trajectory.
When the particle hits the pore boundaries, it is absorbed for
a very short while and then emitted into a new random di-
rection. This new direction is chosen according to Lambert’s
cosine law, where the new angle �� �−� /2 ,� /2� to the nor-
mal component of the surface occurs with probability
dP�� ,���cos �d�, where d�=d� in d=2 and d�
=sin �d�d� in d=3 �15�. The 2d and 3d pores of different
roughness that we consider are built by sticking together n
units of equal length and width h, with n up to 2000, which
leads to a total length L=nh of the pores. For the smooth
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pores �generation �=0�, this unit is a square in d=2 and a
cube in d=3. For higher generations �, the boundary of each
unit is created iteratively by a random generalized Koch
curve: In each generation all lines �squares� of length h /2 are
replaced by one of the two realizations of the Koch curve
generator �see Figs. 1�a� and 1�c��. The highest iteration, �
=3, yields the highest roughness considered in this paper.
Figures 1�b� and 1�d� show examples of random 2d and 3d
pores, respectively. By construction, the volume of the pores
does not depend on �. In the numerical calculations, we have
set the pore width h and the velocity u0 equal to 1.

The first quantity we are interested in is the distribution
P��x�� of the jump lengths �x� parallel to the channel. Figure 2
shows that asymptotically P��x�� decays as

P��x�� � �x�−�1+��, �1�

with �=2 for d=2 and �=3 for d=3, irrespective of the
roughness. For the smooth pore in d=2, Eq. �1� can be easily
derived analytically.

The behavior of P��x�� for large jumps determines the dif-
fusion properties at large times. In the 2d pores, large jumps
occur close to the angles �= ±� /2. In d=3 the jump length
is determined by � and �, and only the proper combination
of both leads to very large jumps. Naturally, this combined
probability is quite small and large jumps are thus very rare.

By definition, the time of each jump is proportional to the
jump length l. For very large jumps, we have x� l, i.e., the
jump time is proportional to the jump length in the x direc-
tion, x� t. Hence, Eq. �1� defines a Levy walk in d=1
�16–19�. It is well known �17–19� that for a Levy walk in
d=1, the mean square displacement scales as

�x2	 = 2Ds�t�t , �2�

where asymptotically

Ds�t� = 
Ds
0 ln t for � = 2,

Ds for � � 2,
� �3�

with proportionality constants Ds and Ds
0. Accordingly, we

expect that in d=2, where �=2, the diffusion is anomalous
with a diffusion coefficient that depends explicitely on time t
and tends to infinity with increasing t. For a direct analytical
calculation of Ds�t� see �20�. Hence, when comparing 2d
systems, it is essential to keep t fixed. In d=3, �=3 and we
expect normal diffusion.

To test these predictions, we have simulated the Knudsen
diffusion for the different pore geometries. To reveal the
logarithmic time behavior of Ds�t� for the 2d pores, we plot
�x2�t�	t−1�ln t�−1 vs t in Fig. 3�a�. For large t, the data reach a
plateau, from which we obtain Ds

0 in accordance with Eqs.
�2� and �3�. The figure also shows that with increasing
boundary roughness, the diffusion is considerably slowed. To
reveal the normal diffusion behavior in d=3, we plot
�x2�t�	 / �2t�=Ds vs t in Fig. 3�b�. Again, the data reach a
plateau showing that Eqs. �2� and �3� describe the behavior

FIG. 1. Geometry of the pores considered in this paper: �a�, �c�
two realizations of the generalized random Koch curve generator in
d=2 and 3, respectively. �b� 2d pore of length L=h and roughness
�=2. �d� 3d pore of length L=2h and roughness �=2.

FIG. 2. The distribution P��x�� is plotted vs �x� for the 2d pores
�open symbols� and for the 3d pores �filled symbols� of �=0
�circles�, �=1 �squares�, and �=3 �triangles�. The data of d=3 have
been shifted down by a factor of 100. The lines of slopes −3 and −4
are guides to the eye. The average was taken over 105 trajectories.

FIG. 3. �a� The scaled mean square displacement �x2�t�	 / �t ln t�
�averaged over 105 trajectories� is plotted vs t in d=2. �b� The
self-diffusion coefficient Ds= �x2�t�	 / �2t� is plotted vs t in d=3. The
different symbols indicate different roughness of �=0 �circles�, 1
�squares�, and 3 �triangles�.
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correctly. Also in d=3, Ds decreases strongly with increasing
boundary roughness. It is interesting to note that the relative
decrease of Ds

0 in d=2 and Ds in d=3 are roughly the same.
Next, we consider the related transport diffusion problem,

where we assume that a constant concentration gradient �� c
=−e�xc0 /L is applied between the concentrations c=c0 at the
left-hand side and c=0 at the right-hand side of the pore.
Particles start at the left wall, perform a random trajectory
between the system walls and are absorbed when they hit
either the left or the right wall. This leads, after some relax-

ation time, to a constant current J�. According to Fick’s law,

the current density j�=J� /hd−1 is given by

j� = − Dt�� c = Dt
c0

L
e�x, �4�

and defines the transport diffusion coefficient Dt.
We want to understand how the anomalous ln t depen-

dence of Ds�t� in d=2 is reflected by Dt and if Dt decreases
with the boundary roughness in the same way as Ds does.
According to Malek and Coppens, Dt is not affected by the
boundary roughness and thus behaves very different from
self-diffusion �4,13,14�. To see if this claim is correct, we
have perfomed extensive numerical calculations of Dt, where
particular emphasis is given to the L dependence arising in
Eq. �4�.

Since the relaxation of the particle flow into a stationary
state is very time consuming, it has become common to de-
rive Dt from the probability f t, that one single particle that
starts at the left wall leaves the system at the right wall �21�.
To calculate f t, N random trajectories are considered that
start at x=0 and end when either x=0 or x=L is reached. By
definition, f t is the ratio between the number of particles
leaving the pore at the right wall and N. Since �j��=c0f t�ux	,
we obtain with Eq. �4�,

Dt = �ux	f tL , �5�

where �ux	 is the mean velocity in the x direction of all
particles when reaching the exit at the right side of the pore.

Our calculation of f t differs from the treatment of �4�,
where only those particles were taken into account that pen-
etrated into the system to some predetermined value xmin
�0. To see, which treatment gives the correct Dt, we have
calculated for small systems in d=2 both the stationary cur-
rent density j� and f t as a function of L for several values of
xmin. This allows us to compare Dt calculated from Eq. �4�
with Dt calculated from Eq. �5�. The results, obtained for �
=0 and one specific realization of �=3, respectively, are
shown in Fig. 4. The curves calculated with Eqs. �4� and �5�
only match perfectly when all particles are included in the
calculation of f t, i.e., for xmin=0. Otherwise one obtains spu-
rious results. Figure 4 also shows that for certain values of
xmin, the effect of the surface roughness is even canceled by
the effect of xmin, which possibly has lead to the incorrect
results of �4,13,14�. Accordingly, it is essential to include all
trajectories into the calculations, even if they leave the pore
already after few steps. Omitting the short trajectories in-

creases the value of f t in an unpredictable and rather arbi-
trary way, such that the modified f t cannot be used to deter-
mine the transport diffusion coefficient Dt.

It is evident from Fig. 4 that f t decreases with increasing
roughness of the pore. To estimate the L dependence of f t,
we can use simple scaling arguments. The time t to travel a
distance L scales �without logarithmic corrections� as t�L2.
Assuming that Dt� f tL is equivalent to Ds, we can obtain the
L dependence of Dt from the t dependence of Ds and vice
versa, yielding

Dt�L� � 
ln L2 � ln L , d = 2

const, d = 3.
� �6�

The counterintuitive increases of Dt with L in d=2 can be
understood in the following way: With increasing, L, the
number of jumps in the pore is increased and hence the prob-
ability that a very large jump will occur increases with L. In
average, the particle is closer to the left wall than to the right
wall and therefore the occurence of long jumps enhances f t.

To put these scaling arguments to a direct test, we have
performed extensive computer simulations of f t�L�. The re-
sults are shown in Fig. 5. To reveal the logarithmic L depen-

FIG. 4. Dt / �ux	 calculated from j� �large open symbols� and from
f t for xmin=0 �small open symbols� and xmin=0.4h �black symbols�
for the 2d systems of �=0 �circles� and �=3 �triangles�. The data
from j� and f t match perfectly when xmin=0, whereas major devia-
tions occur for xmin�0.

FIG. 5. �a� The scaled probability f tL�ln L�−1 �averaged over 106

trajectories� is plotted vs the system length L for the 2d pores. �b�
The transport diffusion coefficient Dt= f tL�ux	 is plotted vs the sys-
tem length L for the 3d pores. �The same symbols as in Fig. 3.�
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dence of Dt in d=2, we plot f tL�ln L�−1 vs L in Fig. 5�a�. For
large L, the data reach a plateau, in accordance with Eq. �6�.
To reveal the normal diffusion behavior in d=3, we have
plotted the transport diffusion coefficient Dt= f tL�ux	 versus
the system size L in Fig. 5�b�, where �ux	�0.67u0 has been
determined by independent numerical calculations. Again,
the data reach a plateau for large values of L, in agreement
with Eq. �6�. From the figure, it is obvious that Dt decreases
monotonically with the roughness of the pore, in remarkable
disagreement with Refs. �4,13,14�. As in Fig. 3, we can see
that the relative decrease of the plateaus in d=2 and d=3
with the boundary roughness is the same. Moreover, the
comparison of Fig. 3�b� with Fig. 5�b� suggests that Ds and
Dt in d=3 are indeed equivalent and the relative decrease of
Ds and Dt with the boundary roughness is identical in both
diffusion problems. We would like to note that in many situ-

ations, deviations from the assumption of a constant concen-
tration gradient along the pore length �Eq. �4�� may be
present, leading via Eq. �5� to the slight differences between
Ds and Dt that we observe.

In summary, we have established a complete description
of self- and transport diffusion �on time and on the pore
length, respectively� in the Knudsen regime both in 2d and
3d pores. We have confirmed that both kinds of diffusion are
identically affected by the pore morphology, exhibiting com-
plete parallelism in slowing down with increasing surface
roughness.
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